Analytical Methods for Calculating Experimental Correlations

B.J. Marshall marshallwj@ornl.gov

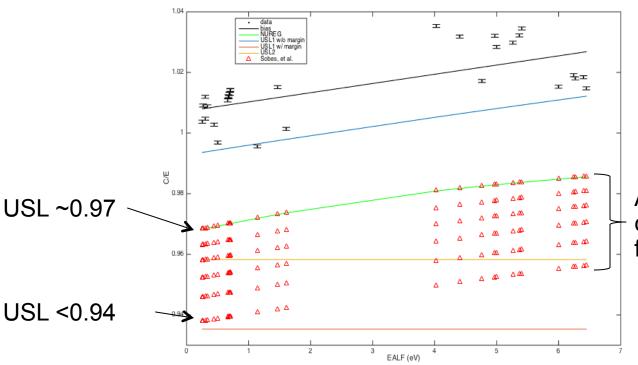
NCSP Technical Program Review

Lawrence Livermore National Laboratory

March 18-19, 2015

Outline

- 1. Introduction
- 2. Sampler description and methods
- 3. Analysis of correlations
 - LEU-COMP-THERM-042
 - 2. LEU-COMP-THERM-007, LEU-COMP-THERM-039
- 4. Other observations
- 5. Conclusions



Introduction

- Criticality safety validations typically use many cases from a single series of critical experiments
- The potential impact of correlations among the different cases has not been fully investigated
- Most methods currently used in validation assume independence of experiments
- Different methods, resulting in changed biases and potentially increased uncertainties, may be needed
- Analysis technique and results for 2 different sets of experiments presented

Importance of Experimental Correlations

- Potentially significant on USL
 - Vlad Sobes has derived a method for implementation in USLSTATS

From Sobes et al.,
"Upper Subcritical Limit
Calculations with
Correlated Integral
Experiments"

Assumed correlation coefficient ranges from 0 to 0.5

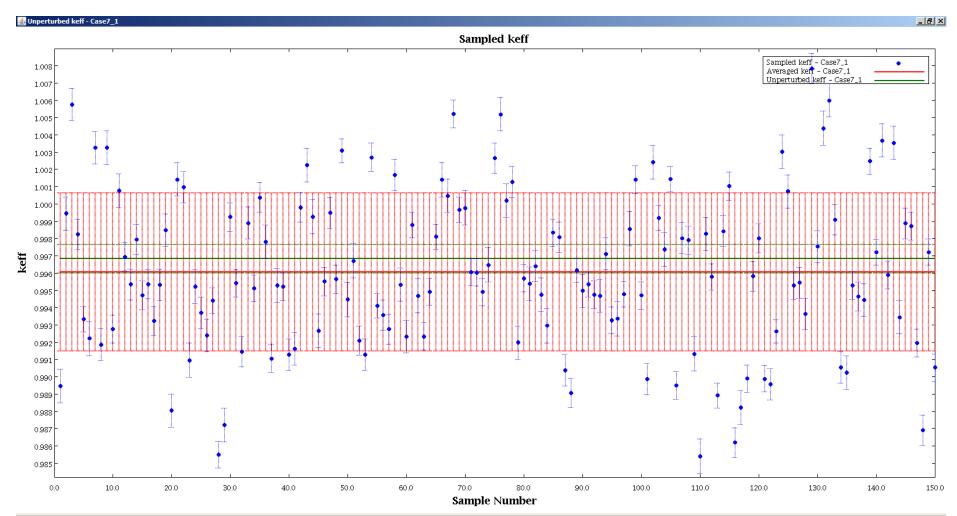
- New sequence available in SCALE 6.2 allowing for random sampling of essentially any input for almost any sequence
- Can be used to quantify uncertainties, or to calculate correlation coefficients
- User selects appropriate distribution and parameters for sampling composition and geometry inputs
 - Available distributions: uniform, normal, and beta
- Expressions can also be used to calculate perturbed inputs
- Perturbations applied to specified cases allowing identical realizations for shared characteristics

Sampler input snippet:

```
read variable[wo_u235]
  distribution = normal
  value = 2.35 stddev = 0.00333
  minimum = 2.34 maximum = 2.36
  cases = Case1 Case2 Case3 Case4 Case5 Case6 Case7 end
end variable
```

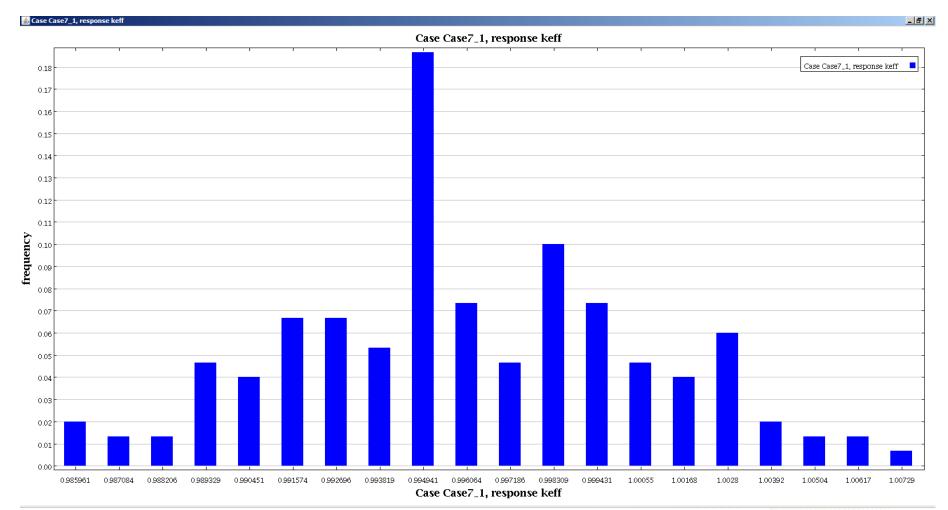
- Defines variable named "wo_u235"
- Values sampled from a normal distribution
 - Average of 2.35 and standard deviation of 0.0033
 - Truncated at 2.34 and 2.36
- Sampled enrichment used in each of the 7 cases since they use the same fuel material

- Independent parameters sampled uniquely in each case
 - Experiment temperature one possible example
- Three step process for executing calculations:
 - Generate requested number of input realizations for each case
 - 2. Execute SCALE for all generated inputs
 - 3. Sampler post-processes KENO output files to generate Sampler outputs

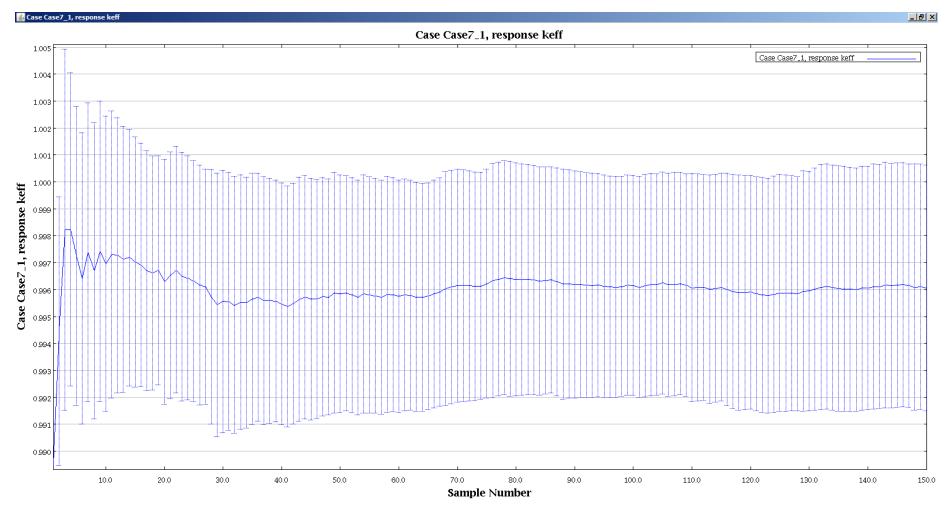

- Experimental correlations generated by Sampler in post-processing mode
- Random sampling to generate correlations based on theoretical developments of Buss, Hoefer, Neuber, and Schmid [PHYSOR 2010]
- Correlation coefficient calculated as covariance divided by product of standard deviations: $c_{i,j} = \frac{cov(i,j)}{\sigma_i \sigma_i}$
- Essential to include random uncertainty from both shared and unique features to generate accurate correlation

Sampler Description – Output

- Many outputs created
- Plots
 - Histograms
 - $-k_{\rm eff}$ by sample
 - Requested parameters
 - Running averages
- Correlations among requested parameters
- Others



Sampler Description – Output $k_{\rm eff}$ by sample, with average



Sampler Description – Output Histogram of $k_{\rm eff}$ values

Sampler Description – Output Running average of k_{eff}

Analysis of LCT-042

- Dimension and material uncertainties described in Section 2 of IHECSBE evaluation
- Vast majority of input values are modified
 - Many sampled directly, others recalculated based on sampled inputs
- Assessment of shared or independent uncertainties needed
 - Poison panels clearly unique
 - Fuel material clearly shared
 - Other components unclear: reflecting wall, fuel rod pitch
 - Assumed to be shared unless otherwise specified

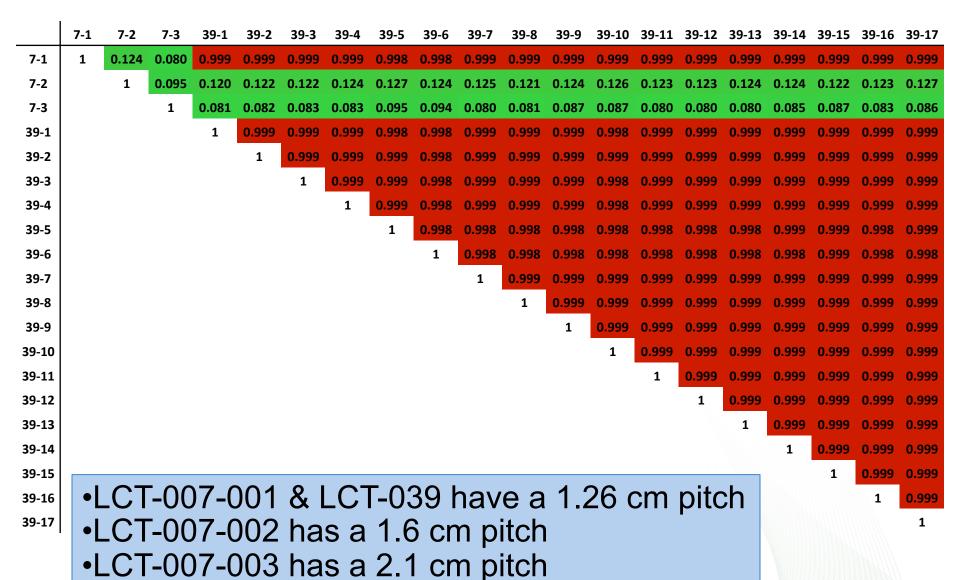
Analysis of LCT-042

- Distributions must be selected for sampling, but these are not specified in evaluation
- Most are assumed to be uniform because this seems likely to yield higher uncertainties and higher correlation coefficients which seems likely to be conservative
- Some parameters, notably enrichment, specifically mention standard deviation and are thus assumed to be normal
 - Obviously this is somewhat bogus as a uniform distribution has a standard deviation as well, so consider this an arbitrary choice
- No sensitivity study has been performed to examine the effect of these assumptions

Results

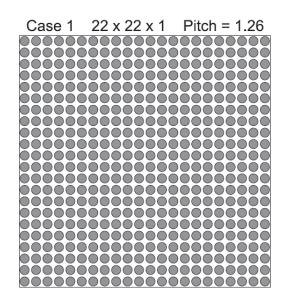
- Sampler created 275 realizations of each of the 7 cases (1925 total KENO jobs)
- Sampler generated correlation coefficients between 0.784 and 0.854

	Case 1	Case 2	Case 3	Case 4	Case 5	Case 6	Case 7
Case 1	1	0.832	0.830	0.826	0.838	0.803	0.814
Case 2		1	0.831	0.831	0.854	0.810	0.829
Case 3			1	0.831	0.820	0.784	0.823
Case 4				1	0.837	0.791	0.806
Case 5					1	0.823	0.796
Case 6						1	0.803
Case 7							1

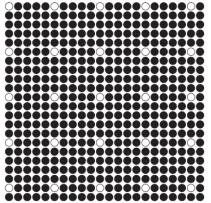


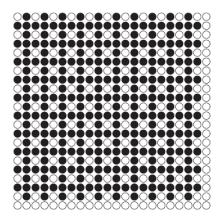
Analysis of LCT-007 & LCT-039

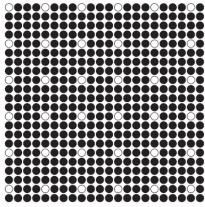
- Analysis part of NEA Working Party on Nuclear Criticality Safety (WPNCS) Expert Group on Uncertainty Analysis for Criticality Safety Analysis (UACSA) benchmark for experimental correlations
- Problem specification controls sampled parameters and distributions
 - Fuel and pellet dimensions, fuel composition, fuel rod pitch, critical water height
- Work done in FY14 assumed fully correlated fuel pitch across all rods in all 20 cases considered
 - LCT-007-001 through -003 & all 17 cases in LCT-039

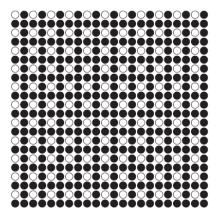


Results – LCT-007 & LCT-039




LCT-007-001 & Selected LCT-039 Configurations


LCT-007

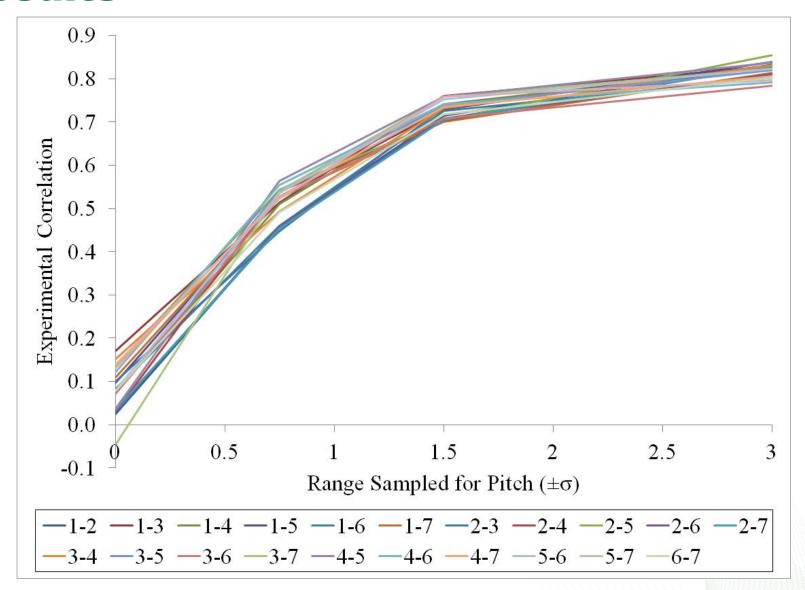

Case 1: 1 rod in 5 removed

Case 5: 1 rod in 2 removed - array 21 x 21

Case 2: 1 rod in 4 removed

Case 6: 1 rod in 2 removed

LCT-039



Results

- Results from LCT-007 and LCT-039 indicate that fuel rod pitch is the controlling parameter, not shared fuel material
- Study performed on LCT-042 to investigate
 - New realizations created and correlations recalculated assuming ±1.5 and ±0.75 standard deviations and fixed rod pitches (fixed means no uncertainty)
 - Reducing uncertainty in a shared component should reduce correlation coefficient
 - Sensitivity of correlations to pitch sampling examined
 - Recall: Original concern largely driven by use of same fissile material in multiple experiments

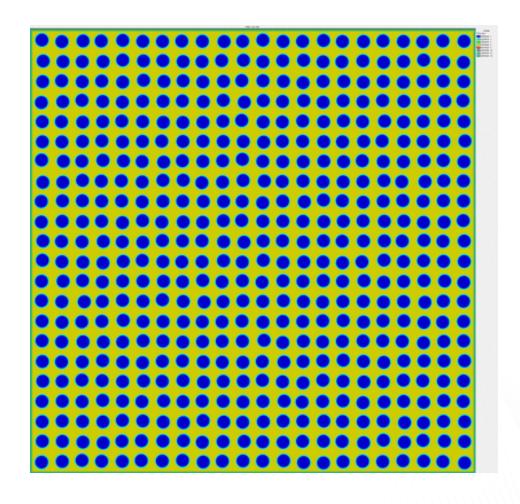
Results

Other Observations

- Stochastic sampling to generate correlations presents many challenges
- Uncertainties are not known or provided for all parameters in Section 2 of IHECSBE evaluations
- Distributions of uncertain parameters is not addressed
- Details of experiment have been lost
 - Cd foil (LCT-042-005) mounted on something in some orientation
 - Pitch uncertainty from measurements of triangular pitch support plate, but LCT-042 has square pitch rods
- Collecting all sampling input is nearly impossible
- Treatment of pitch uncertainties (and defense of treatment to regulators) extremely important, yet unclear

Conclusions

- Stochastic sampling method to determine correlation coefficients can be performed using Sampler in SCALE 6.2
 - Also calculated uncertainties which can be compared to estimated uncertainties derived in Section 2 of IHECSBE evaluation
- Initial assumptions lead to high correlation coefficients
 - Fuel rod pitch appears to be controlling parameter for LCT experiments – not shared fissile material
- Different assumptions related to rod pitch variation reduce coefficients to less than 0.2
 - Fixed pitch results likely similar to totally random pitch variations
- Application of method to entire handbook is daunting



Future Work in FY15

- New models built for LCT-007 and LCT-039 with each pin modeled in separate unit
 - Supports new problem specification from UACSA
 - Utilized TemplateEngine in SCALE 6.2 Beta3
 - Pin-by-pin location sampling to establish correlation coefficients with varying degrees of independent pitch sampling
- Potentially revisit HST-001 correlations
 - Initially generated by student in Summer 2012
 - Incomplete specification believed to have impacted apparent correlations
 - First non-lattice case to be examined

Animation of first 75 realizations of LCT-007-001

